The Einstein-dirac Equation on Sasakian 3-manifolds
نویسنده
چکیده
We prove that a Sasakian 3-manifold admitting a non-trivial solution to the Einstein-Dirac equation has necessarily constant scalar curvature. In the case when this scalar curvature is non-zero, their classi cation follows then from a result by Th. Friedrich and E.C. Kim. We also prove that a scalarat Sasakian 3-manifold admits no local Einstein spinors.
منابع مشابه
The Einstein - Dirac Equation on Riemannian SpinManifolds .
We construct exact solutions of the Einstein-Dirac equation, which couples the gravitational eld with an eigenspinor of the Dirac operator via the energy-momentum tensor. For this purpose we introduce a new eld equation generalizing the notion of Killing spinors. The solutions of this spinor eld equation are called weak Killing spinors (WK-spinors). They are special solutions of the Einstein-Di...
متن کاملThe Einstein-dirac Equation on Riemannian Spin
We construct exact solutions of the Einstein-Dirac equation, which couples the gravitational field with an eigenspinor of the Dirac operator via the energymomentum tensor. For this purpose we introduce a new field equation generalizing the notion of Killing spinors. The solutions of this spinor field equation are called weak Killing spinors (WK-spinors). They are special solutions of the Einste...
متن کاملNotes on some classes of 3-dimensional contact metric manifolds
A review of the geometry of 3-dimensional contact metric manifolds shows that generalized Sasakian manifolds and η-Einstein manifolds are deeply interrelated. For example, it is known that a 3-dimensional Sasakian manifold is η-Einstein. In this paper, we discuss the relationships between several special classes of 3-dimensional contact metric manifolds which are generalizations of 3-dimensiona...
متن کاملSasakian Geometry, Hypersurface Singularities, and Einstein Metrics Charles P. Boyer and Krzysztof Galicki
This review article has grown out of notes for the three lectures the second author presented during the XXIV-th Winter School of Geometry and Physics in Srni, Czech Republic, in January of 2004. Our purpose is twofold. We want give a brief introduction to some of the techniques we have developed over the last 5 years while, at the same time, we summarize all the known results. We do not give a...
متن کاملSolutions of the Einstein - Dirac Equation on Riemannian 3 - Manifolds with Constant Scalar Curvature
This paper contains a classification of all 3-dimensional manifolds with constant scalar curvature S 6= 0 that carry a non-trivial solution of the Einstein-Dirac equation. Subj. Class.: Differential Geometry. 1991 MSC: 53C25, 58G30
متن کامل